Voting algorithms for the motif finding problem.

نویسندگان

  • Xiaowen Liu
  • Bin Ma
  • Lusheng Wang
چکیده

UNLABELLED Finding motifs in many sequences is an important problem in computational biology, especially in identification of regulatory motifs in DNA sequences. Let c be a motif sequence. Given a set of sequences, each is planted with a mutated version of c at an unknown position, the motif finding problem is to find these planted motifs and the original c. In this paper, we study the VM model of the planted motif problem, which is proposed by Pevzner and Sze. We give a simple Selecting One Voting algorithm and a more powerful Selecting k Voting algorithm. When the length of motif and the number of input sequences are large enough, we prove that the two algorithms can find the unknown motif consensus with high probability. In the proof, we show why a large number of input sequences is so important for finding motifs, which is believed by most researchers. Experimental results on simulated data also support the claim. Selecting k Voting algorithm is powerful, but computational intensive. To speed up the algorithm, we propose a progressive filtering algorithm, which improves the running time significantly and has good accuracy in finding motifs. Our experimental results show that Selecting k Voting algorithm with progressive filtering performs very well in practice and it outperforms some best known algorithms. AVAILABILITY The software is available upon request.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

An Efficient Algorithm for String Motif Discovery

Finding common patterns, motifs, in a set of DNA sequences is an important problem in bioinformatics. One common representation of motifs is a string with symbols A, C, G, T and N where N stands for the wildcard symbol. In this paper, we introduce a more general motif discovery problem without any weaknesses of the Planted (l,d)-Motif Problem and also a set of control sequences as an additional...

متن کامل

Voting algorithms for discovering long motifs

Pevzner and Sze [14] have introduced the Planted (l,d)-Motif Problem to find similar patterns (motifs) in sequences which represent the promoter region of co-regulated genes. l is the length of the motif and d is the maximum Hamming distance around the similar patterns. Many algorithms have been developed to solve this motif problem. However, these algorithms either have long running times or d...

متن کامل

Finding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms

  The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational systems bioinformatics. Computational Systems Bioinformatics Conference

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2008